Advertisements
Advertisements
Question
How many 3-digit numbers are there, with distinct digits, with each digit odd?
Solution
The hundred's place can be filled by {1, 3, 5, 7, 9), i.e. 5 digits.
The ten's place can now be filled by 4 digits (as one digit is already used in the hundred's place and repetition is not allowed )
Similarly, the unit's place can be filled by 3 digits.
Total number of 3-digit numbers = `5xx4xx3=60`
APPEARS IN
RELATED QUESTIONS
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
Compute:
L.C.M. (6!, 7!, 8!)
Prove that
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit odd numbers are there?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
If nC12 = nC5, find the value of n.
If 8Cr − 7C3 = 7C2, find r.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
Find the number of diagonals of , 1.a hexagon
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
Find the number of (i) diagonals
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
Find the value of 15C4 + 15C5
Find the value of 20C16 – 19C16
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A convex polygon has 44 diagonals. Find the number of its sides.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.