Advertisements
Advertisements
Question
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Solution
A team of 3 boys and 3 girls is to be selected from 5 boys and 4 girls.
3 boys can be selected from 5 boys in `""^5C_3` ways.
3 girls can be selected from 4 girls in `""^4C_3 `ways.
Therefore, by multiplication principle, number of ways in which a team of 3 boys and 3 girls can be selected
= 5C3 x 4C3
= `(5!)/(3!2!) xx (4!)/(3!1!)`
= `(5 xx 4 xx 3!)/(3! xx 2) xx (4 xx 3!)/(3!)`
= 10 x 4 = 40
APPEARS IN
RELATED QUESTIONS
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
How many chords can be drawn through 21 points on a circle?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
Prove that
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
In how many ways can an examinee answer a set of ten true/false type questions?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
How many three-digit numbers are there?
How many 9-digit numbers of different digits can be formed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
f 24Cx = 24C2x + 3, find x.
If nC4 , nC5 and nC6 are in A.P., then find n.
If 16Cr = 16Cr + 2, find rC4.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
How many triangles can be obtained by joining 12 points, five of which are collinear?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
Find the number of ways in which : (a) a selection
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the value of 15C4
Find the value of 20C16 – 19C16
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.