English

From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. - Mathematics

Advertisements
Advertisements

Question

From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?

Sum

Solution

Out of 25 students, 10 students are to be included in the tour group. But 3 out of 10 students are like this

(i) When all three join the touring party or

(ii) All three do not happen.

(i) Methods of selecting the excursion group when three students join the team = 22C7

(ii) Methods of selection when all three students are not included in the tour group = 22C10

Methods of selecting the touring party in both the cases = 22C7 + 22C10

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Permutations and Combinations - Miscellaneous Exercise [Page 157]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 7 Permutations and Combinations
Miscellaneous Exercise | Q 10 | Page 157

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


Compute: 

(i)\[\frac{30!}{28!}\]


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


In how many ways can an examinee answer a set of ten true/false type questions?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?


Evaluate the following:

n + 1Cn


If nC4 = nC6, find 12Cn.


If n +2C8 : n − 2P4 = 57 : 16, find n.


If α = mC2, then find the value of αC2.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


Find the number of diagonals of (ii) a polygon of 16 sides.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If 20Cr + 1 = 20Cr − 1 , then r is equal to


If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to


Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


Find the value of 15C4 + 15C5 


If α = mC2, then αCis equal to.


How many committee of five persons with a chairperson can be selected from 12 persons.


There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×