Advertisements
Advertisements
Question
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
Options
216
156
172
none of these
Solution
156
We need at least three points to draw a circle that passes through them.
Now, number of circles formed out of 11 points by taking three points at a time = 11C3 = 165
Number of circles formed out of 5 points by taking three points at a time = 5C3 = 10
It is given that 5 points lie on one circle.
APPEARS IN
RELATED QUESTIONS
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
How many chords can be drawn through 21 points on a circle?
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
14C3
If n +2C8 : n − 2P4 = 57 : 16, find n.
If α = mC2, then find the value of αC2.
How many triangles can be obtained by joining 12 points, five of which are collinear?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
If 20Cr = 20Cr + 4 , then rC3 is equal to
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Find the value of 80C2
Find the value of 15C4 + 15C5
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
How many committee of five persons with a chairperson can be selected from 12 persons.
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
A convex polygon has 44 diagonals. Find the number of its sides.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?