Advertisements
Advertisements
Question
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
Solution
If there are at least 3 girls in the committee then the committees will be formed as follows:
- 3 girls, 4 boys
- 4 girls, 3 boys
Total ways of forming these committees = 4C3 x 9C4 + 4C4 x 9C3
= 4C1 x 9C4 + 1 x 9C3
= `4 xx (9 xx 8 xx 7 xx 6)/(1 xx 2 xx 3 xx 4) + (9 xx 8 xx 7)/(1 xx 2 xx 3)`
= 504 + 84
= 588
APPEARS IN
RELATED QUESTIONS
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Compute:
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
Twelve students complete in a race. In how many ways first three prizes be given?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
If n +2C8 : n − 2P4 = 57 : 16, find n.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If C (n, 12) = C (n, 8), then C (22, n) is equal to
If nC12 = nC8 , then n =
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.