Advertisements
Advertisements
Question
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Solution
The first digit cannot be zero. Thus, the first digit can be filled in 5 ways.
Number of ways for filling the second digit = 5
(as repetition of digits is not allowed)
Number of ways for filling the third digit = 4
Number of ways for filling the fourth digit = 3
Number of ways for filling the fifth digit = 2
Number of ways for filling the sixth digit = 1
Total numbers = `5xx5xx4xx3xx2xx1= 600`
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Compute:
L.C.M. (6!, 7!, 8!)
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
In how many ways can an examinee answer a set of ten true/false type questions?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
How many three-digit odd numbers are there?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
35C35
If nC10 = nC12, find 23Cn.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
Find the number of diagonals of (ii) a polygon of 16 sides.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls?
Find the number of (ii) triangles
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
If 15C3r = 15Cr + 3 , then r is equal to
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
Find the value of 15C4 + 15C5
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A convex polygon has 44 diagonals. Find the number of its sides.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.