English

A Candidate is Required to Answer 7 Questions Out of 12 Questions Which Are Divided into Two Groups, Each Containing 6 Questions. He is Not Permitted to Attempt More than 5 Questions from Either - Mathematics

Advertisements
Advertisements

Question

A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?

Solution

Required ways = 

\[{}^6 C_5 \times^6 C_2 +^6 C_4 \times^6 C_3 + {}^6 C_3 \times^6 C_4 + {}^6 C_2 \times^6 C_5\]
\[= 2\left( {}^6 C_5 \times^6 C_2 +^6 C_4 \times^6 C_3 \right)\]
\[ = 2\left( 90 + 300 \right)\]
\[ = 2\left( 390 \right)\]
\[ = 780\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.2 | Q 13 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


Compute:

\[\frac{11! - 10!}{9!}\]

In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


Twelve students complete in a race. In how many ways first three prizes be given?


How many three-digit numbers are there with no digit repeated?


How many 3-digit numbers are there, with distinct digits, with each digit odd?


Evaluate the following:

n + 1Cn


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If 2nC3 : nC2 = 44 : 3, find n.


If α = mC2, then find the value of αC2.


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?


A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 


Find the number of (ii) triangles


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?


A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?


If 20Cr + 1 = 20Cr − 1 , then r is equal to


If nC12 = nC8 , then n =


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


Find the value of 15C4 


Find the value of 80C2


Find the value of 20C1619C16 


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


If some or all of n objects are taken at a time, the number of combinations is 2n – 1.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×