English

If 15cr : 15cr − 1 = 11 : 5, Find R. - Mathematics

Advertisements
Advertisements

Question

If 15Cr : 15Cr − 1 = 11 : 5, find r.

Solution

Given:
 15Cr : 15Cr − 1 = 11 : 5
We have,

\[\frac{{}^{15} C_r}{{}^{15} C_{r - 1}} = \frac{11}{5}\]

\[\Rightarrow \frac{15 - r + 1}{r} = \frac{11}{5}\]
\[\frac{{}^n C_r}{{}^n C_{r - 1}} = \frac{n - r + 1}{r}\]

\[\Rightarrow 75 - 5r + 5 = 11r\]
\[ \Rightarrow 16r = 80\]
\[ \Rightarrow r = 5\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.1 | Q 9 | Page 8

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If nC8 = nC2, find nC2.


Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?


How many three-digit numbers are there with no digit repeated?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


Evaluate the following:

35C35


From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?


Find the number of diagonals of (ii) a polygon of 16 sides.


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


If 20Cr + 1 = 20Cr − 1 , then r is equal to


If nC12 = nC8 , then n =


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


15C8 + 15C915C615C7 = ______.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.


A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×