English

From Among the 36 Teachers in a College, One Principal, One Vice-principal and the Teacher-incharge Are to Be Appointed. in How Many Ways Can this Be Done? - Mathematics

Advertisements
Advertisements

Question

From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?

Solution

Total number of teachers in the college = 36
Number of ways of  selecting a principal = 36
Number of ways of selecting a vice-principal = 35 (as one of the teacher is already being selected for the post of principal)
Similarly, number of ways of selecting the teacher-incharge = 34
∴ Total number of ways of selecting all the three = 36\[\times\]35\[\times\]34 = 42840

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.2 | Q 15 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If nC8 = nC2, find nC2.


If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?


How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?


Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?


How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?


Evaluate the following:

12C10


If 18Cx = 18Cx + 2, find x.


If 15Cr : 15Cr − 1 = 11 : 5, find r.


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


Find the number of diagonals of (ii) a polygon of 16 sides.


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?


Find the number of (i) diagonals


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If 20Cr = 20Cr−10, then 18Cr is equal to


If mC1 nC2 , then


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to


There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?


If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to


If 43Cr − 6 = 43C3r + 1 , then the value of r is


The number of diagonals that can be drawn by joining the vertices of an octagon is


Find the value of 20C1619C16 


All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×