English

There Are 5 Books on Mathematics and 6 Books on Physics in a Book Shop. in How Many Ways Can a Students Buy : (I) a Mathematics Book and a Physics Book - Mathematics

Advertisements
Advertisements

Question

There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?

Solution

Number of  books on mathematics = 5
Number of books on physics = 6
 Number of ways of buying a mathematics book = 5
Similarly, number of ways of buying a physics book = 6
(i) By using fundamental principle of multiplication:
Number of ways of buying a mathematics and a physics book = 6\[\times\]5 = 30
(ii) By using the fundamental principle of addition:
Number of ways of buying either a mathematics or a physics book = 6 + 5 = 11

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.2 | Q 10 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


Compute:

 L.C.M. (6!, 7!, 8!)


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?


Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


Evaluate the following:

14C3


Evaluate the following:

12C10


If 18Cx = 18Cx + 2, find x.


If 8Cr − 7C3 = 7C2, find r.


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If α = mC2, then find the value of αC2.


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 


A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?


Find the number of (i) diagonals


Find the number of (ii) triangles


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If 20Cr = 20Cr−10, then 18Cr is equal to


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is


How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


A convex polygon has 44 diagonals. Find the number of its sides.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red


The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.


Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×