Advertisements
Advertisements
Question
If 8Cr − 7C3 = 7C2, find r.
Solution
Given:
8Cr − 7C3 = 7C2
We have,\[{}^8 C_r = {}^7 C_2 + {}^7 C_3\]
\[ \Rightarrow r = 5\]
APPEARS IN
RELATED QUESTIONS
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
Compute:
How many three-digit numbers are there?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
Evaluate the following:
14C3
Evaluate the following:
35C35
If 15C3r = 15Cr + 3, find r.
If n +2C8 : n − 2P4 = 57 : 16, find n.
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
How many triangles can be obtained by joining 12 points, five of which are collinear?
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
Find the number of (ii) triangles
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.