English

A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls? - Mathematics

Advertisements
Advertisements

Question

A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?

Sum

Solution

If maximum 3 girls are to be included in the committee, then the committees will be formed as follows:

  1. No girls and 7 boys
  2. 1 girl and 6 boys
  3. 2 girls and 5 boys
  4. 3 girls and 4 boys

Hence, the total committees formed = 4C0 x 9C7 + 4C1 x 9C6 + 4C2 x 9C5 + 4C3 x 9C4

= 1 x 9C2 + 4C1 x 9C3 + 4C2 x 9C4 + 4C1 x 9C4

= 1 x `(9 xx 8)/(1 xx 2) + 4/1 xx (9 xx 8 xx 7)/(1 xx 2 xx 3) + (4 xx 3)/(1 xx 7) xx (9 xx 8 xx 7 xx 6)/(1 xx 2 xx 3 xx 4) + 4/1 xx (9 xx 8 xx 7 xx 6)/(1 xx 2 xx 3 xx 4)`

= 1 x 36 + 4 x 84 + 6 x 126 + 4 x 126

= 36 + 336 + 126 x (6+ 4)

= 372 + 1260

= 1632

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.2 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.2 | Q 30.3 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If nC8 = nC2, find nC2.


Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


How many three-digit numbers are there with no digit repeated?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?


If nC12 = nC5, find the value of n.


If nC10 = nC12, find 23Cn.


24Cx = 24C2x + 3, find x.


If 15C3r = 15Cr + 3, find r.


If 28C2r : 24C2r − 4 = 225 : 11, find r.


A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


Find the number of ways in which : (a) a selection


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


If α = mC2, then αCis equal to.


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.


Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.


The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×