English

The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number o - Mathematics

Advertisements
Advertisements

Question

The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.

Options

  • `""^((m + n + k))"C"_3`

  • `""^((m + n + k))"C"_3 - ""^n"C"_3 - ""^6"C"_3 - ""^k"C"_3`

  • mC3 + nC3 + kC3

  • mC3 × nC3 × kC3 

MCQ
Fill in the Blanks

Solution

The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are `""^((m + n + k))"C"_3 - ""^n"C"_3 - ""^6"C"_3 - ""^k"C"_3`.

Explanation:

Here the total number of points are (m + n + k) which must give `""^((m + n + k))"C"_3` number of triangles but m points on l1 taking 3 points at a time gives mC3 combinations which produce no triangle.

Similarly, nC3 and kC3 number of triangles can not be formed.

Therefore, the required number of triangles is `""^((m + n + k))"C"_3 - ""^n"C"_3 - ""^6"C"_3 - ""^k"C"_3`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Permutations and Combinations - Solved Examples [Page 121]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 7 Permutations and Combinations
Solved Examples | Q 19 | Page 121

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If nC8 = nC2, find nC2.


Compute:

\[\frac{11! - 10!}{9!}\]

How many three-digit numbers are there with no digit repeated?


How many three-digit numbers are there?


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


If 15C3r = 15Cr + 3, find r.


If α = mC2, then find the value of αC2.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines


If 20Cr = 20Cr + 4 , then rC3 is equal to


If 15C3r = 15Cr + 3 , then r is equal to


If nCr + nCr + 1 = n + 1Cx , then x =


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


If 43Cr − 6 = 43C3r + 1 , then the value of r is


If n + 1C3 = 2 · nC2 , then n =


Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?


If α = mC2, then αCis equal to.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


15C8 + 15C915C615C7 = ______.


In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×