English

How Many Three-digit Numbers Are There? - Mathematics

Advertisements
Advertisements

Question

How many three-digit numbers are there?

Solution

Available digits for filling any place = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}
Since the thousand's place cannot be zero, available digits to fill the thousand's place = 9
Number of ways of filling the ten's digit = 10
Similarly, number of ways of filling the unit's digit = 10
∴ Total number of three digit numbers = 9\[\times\]10\[\times\]10 = 900

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Permutations - Exercise 16.2 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 16 Permutations
Exercise 16.2 | Q 17 | Page 15

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


Compute:

\[\frac{11! - 10!}{9!}\]

Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


How many 3-digit numbers are there, with distinct digits, with each digit odd?


Evaluate the following:

12C10


If nC12 = nC5, find the value of n.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


How many triangles can be obtained by joining 12 points, five of which are collinear?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls? 


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is


If 43Cr − 6 = 43C3r + 1 , then the value of r is


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


If α = mC2, then αCis equal to.


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


15C8 + 15C915C615C7 = ______.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×