Advertisements
Advertisements
Question
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
Solution
If two courses are compulsory, then remaining courses = 9 – 2 = 7
Ways to choose 3 courses out of 7 courses = 7C3
Thus, required number of ways of choosing the programme
= 7C3
= `(7!)/(3!4!)`
= `(7 xx 6 xx 5 xx 4!)/(3 xx 2 xx 1 xx 4!)`
= 35
APPEARS IN
RELATED QUESTIONS
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
Compute:
(i)\[\frac{30!}{28!}\]
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
Evaluate the following:
n + 1Cn
If nC4 = nC6, find 12Cn.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?
Find the number of diagonals of (ii) a polygon of 16 sides.
How many triangles can be obtained by joining 12 points, five of which are collinear?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
Find the number of ways in which : (a) a selection
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 20Cr = 20Cr−10, then 18Cr is equal to
If 20Cr = 20Cr + 4 , then rC3 is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
The number of diagonals that can be drawn by joining the vertices of an octagon is
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?