Advertisements
Advertisements
Question
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
Solution
Since the number has to be greater than 7000, the thousand's place can only be filled by three digits, i.e. 7, 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = 3\[\times\]4\[\times\]3\[\times\]2 = 72
APPEARS IN
RELATED QUESTIONS
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
Compute:
(i)\[\frac{30!}{28!}\]
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
Evaluate the following:
12C10
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
Find the number of diagonals of (ii) a polygon of 16 sides.
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
Find the number of (i) diagonals
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Find the value of 15C4
Find the value of 80C2
Find the value of 20C16 – 19C16
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
How many committee of five persons with a chairperson can be selected from 12 persons.
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.