English

How Many Words Can Be Formed by Taking 4 Letters at a Time from the Letters of the Word 'Moradabad'? - Mathematics

Advertisements
Advertisements

Question

How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?

Solution

There are 9 letters in the word MORADABAD, namely AAA, DD, M, R, B and O.
The four-letter word may consists of
(i) 3 alike letters and 1 distinct letter
(ii) 2 alike letters of one kind and 2 alike letters of the other kind
(iii) 2 alike letters and 2 distinct letters
(iv) all different letters

(i) 3 alike letters and 1 distinct letter:
There is one set of three alike letters, AAA, which can be selected in one way.
Out of the 5 different letters D, M, R, B and O, one can be selected in \[{}^5 C_1\]ways.
These four letters can be arranged in\[\frac{4!}{3! 1!}\]ways.
∴ Total number of ways = \[{}^5 C_1 \times \frac{4!}{3! 1!} = 20\]

(ii) There are two sets of two alike letters, which can be selected in 2C2 ways.
Now, the letters of each group can be arranged in \[\frac{4!}{2! 2!}\]ways.
∴ Total number of ways =\[{}^2 C_2 \times \frac{4!}{2! 2!} = 6\]

(iii) There is only one set of two alike letters, which can be selected in 2C1 ways.
Now, from the remaining 5 letters, 2 letters can be chosen in 5C2 ways.
Thus, 2 alike letters and 2 different letters can be selected in 2Cx 5C2 = 20 ways.

Now, the letters of each group can be arranged in \[\frac{4!}{2!}\]

∴ Total number of ways = \[20 \times \frac{4!}{2!} = 240\]

(iv) There are 6 different letters A, D, M,B, O and R.
So, the number of ways of selecting 4 letters is 6C4, i.e. 15, and these letters can be arranged in 4! ways.
∴ Total number of ways = 15 x  4! = 360

∴ Total number of ways = 20 + 6 + 240 + 360 = 626

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.3 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.3 | Q 8 | Page 23

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 12 : 1`


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?


In how many ways can an examinee answer a set of ten true/false type questions?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


How many 3-digit numbers are there, with distinct digits, with each digit odd?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?


Evaluate the following:

14C3


Evaluate the following:

35C35


Evaluate the following:

\[\sum^5_{r = 1} {}^5 C_r\]

 


If nC4 = nC6, find 12Cn.


If 15C3r = 15Cr + 3, find r.


If 8Cr − 7C3 = 7C2, find r.


If α = mC2, then find the value of αC2.


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.


If 20Cr = 20Cr + 4 , then rC3 is equal to


If 20Cr + 1 = 20Cr − 1 , then r is equal to


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


Find the value of 20C1619C16 


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×