Advertisements
Advertisements
प्रश्न
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
उत्तर
There are 9 letters in the word MORADABAD, namely AAA, DD, M, R, B and O.
The four-letter word may consists of
(i) 3 alike letters and 1 distinct letter
(ii) 2 alike letters of one kind and 2 alike letters of the other kind
(iii) 2 alike letters and 2 distinct letters
(iv) all different letters
(i) 3 alike letters and 1 distinct letter:
There is one set of three alike letters, AAA, which can be selected in one way.
Out of the 5 different letters D, M, R, B and O, one can be selected in \[{}^5 C_1\]ways.
These four letters can be arranged in\[\frac{4!}{3! 1!}\]ways.
∴ Total number of ways = \[{}^5 C_1 \times \frac{4!}{3! 1!} = 20\]
(ii) There are two sets of two alike letters, which can be selected in 2C2 ways.
Now, the letters of each group can be arranged in \[\frac{4!}{2! 2!}\]ways.
∴ Total number of ways =\[{}^2 C_2 \times \frac{4!}{2! 2!} = 6\]
(iii) There is only one set of two alike letters, which can be selected in 2C1 ways.
Now, from the remaining 5 letters, 2 letters can be chosen in 5C2 ways.
Thus, 2 alike letters and 2 different letters can be selected in 2C1 x 5C2 = 20 ways.
Now, the letters of each group can be arranged in \[\frac{4!}{2!}\]
∴ Total number of ways = \[20 \times \frac{4!}{2!} = 240\]
(iv) There are 6 different letters A, D, M,B, O and R.
So, the number of ways of selecting 4 letters is 6C4, i.e. 15, and these letters can be arranged in 4! ways.
∴ Total number of ways = 15 x 4! = 360
∴ Total number of ways = 20 + 6 + 240 + 360 = 626
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
How many chords can be drawn through 21 points on a circle?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
Compute:
(i)\[\frac{30!}{28!}\]
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
In how many ways can an examinee answer a set of ten true/false type questions?
Twelve students complete in a race. In how many ways first three prizes be given?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit numbers are there with no digit repeated?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If nC10 = nC12, find 23Cn.
If 18Cx = 18Cx + 2, find x.
If 15C3r = 15Cr + 3, find r.
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If α = mC2, then find the value of αC2.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
Find the value of 15C4 + 15C5
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A convex polygon has 44 diagonals. Find the number of its sides.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
If nC12 = nC8, then n is equal to ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.