Advertisements
Advertisements
प्रश्न
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
उत्तर
A businessman hosts a dinner for 21 guests.
15 people can be accommodated at one table in 21C15 ways. They can arrange themselves in \[\left( 15 - 1 \right)! = 14!\]ways.
The remaining 6 people can be accommodated at another table in 6C6 ways. They can arrange themselves in\[\left( 6 - 1 \right)! = 5!\] ways.
∴ Total number of ways =\[{}^{21} C_{15} \times^6 C_6 \times 14! \times 5! =^{21} C_{15} \times 14! \times 5!\]
APPEARS IN
संबंधित प्रश्न
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
How many three-digit odd numbers are there?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
14C3
Evaluate the following:
If nC12 = nC5, find the value of n.
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
How many triangles can be obtained by joining 12 points, five of which are collinear?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
If 20Cr = 20Cr−10, then 18Cr is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
The number of diagonals that can be drawn by joining the vertices of an octagon is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
How many committee of five persons with a chairperson can be selected from 12 persons.
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.