Advertisements
Advertisements
प्रश्न
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
उत्तर
The possibilities are: 4 from Part A and 6 from Part B
or 5 from Part A and 5 from Part B
or 6 from Part A and 4 from Part B.
Therefore, the required number of ways is
6C4 × 7C6 + 6C5 × 7C5 + 6C6 × 7C4
= 105 + 126 + 35
= 266.
APPEARS IN
संबंधित प्रश्न
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
In how many ways can an examinee answer a set of ten true/false type questions?
How many three-digit numbers are there?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
12C10
If nC4 = nC6, find 12Cn.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Find the value of 20C16 – 19C16
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
If nC12 = nC8, then n is equal to ______.
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.