Advertisements
Advertisements
प्रश्न
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
उत्तर
A question paper consists of 12 questions divided into 2 parts, one with 5 and the other with 7 questions.
A student has to attempt 8 questions out of the 12 questions by selecting at least 3 from each part.
∴ Required number of ways =\[{}^5 C_3 \times^7 C_5 + {}^5 C_4 \times^7 C_4 +^5 C_5 \times^7 C_3 = 210 + 175 + 35 = 420\]
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
Compute:
(i)\[\frac{30!}{28!}\]
Compute:
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
Twelve students complete in a race. In how many ways first three prizes be given?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
12C10
Evaluate the following:
35C35
If nC4 , nC5 and nC6 are in A.P., then find n.
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
How many different selections of 4 books can be made from 10 different books, if two particular books are never selected?
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
If 20Cr = 20Cr + 4 , then rC3 is equal to
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
If n + 1C3 = 2 · nC2 , then n =
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.