मराठी

The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.

पर्याय

  • 94

  • 126

  • 128

  • None

MCQ
रिकाम्या जागा भरा

उत्तर

The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is 94.

Explanation:

Number of men = 4

Number of women = 6

We are given that the committee includes 2 men and exactly twice as many women as men.

Thus, the possible selection can be

2 men and 4 women and 3 men and 6 women.

So, the number of committee = 4C2 × 6C4 + 4C3 × 6C6

= 6 × 5 + 4 × 1

= 90 + 4

= 94

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Permutations and Combinations - Exercise [पृष्ठ १२५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 7 Permutations and Combinations
Exercise | Q 37 | पृष्ठ १२५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


Compute:

\[\frac{11! - 10!}{9!}\]

A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


Since the  number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`


Evaluate the following:

35C35


If nC12 = nC5, find the value of n.


If 18Cx = 18Cx + 2, find x.


If α = mC2, then find the value of αC2.


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


If 20Cr + 1 = 20Cr − 1 , then r is equal to


If mC1 nC2 , then


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


Find the value of 20C1619C16 


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×