Advertisements
Advertisements
Question
The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.
Options
94
126
128
None
Solution
The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is 94.
Explanation:
Number of men = 4
Number of women = 6
We are given that the committee includes 2 men and exactly twice as many women as men.
Thus, the possible selection can be
2 men and 4 women and 3 men and 6 women.
So, the number of committee = 4C2 × 6C4 + 4C3 × 6C6
= 6 × 5 + 4 × 1
= 90 + 4
= 94
APPEARS IN
RELATED QUESTIONS
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
Compute:
(i)\[\frac{30!}{28!}\]
Compute:
L.C.M. (6!, 7!, 8!)
In how many ways can an examinee answer a set of ten true/false type questions?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
In how many ways can six persons be seated in a row?
If nC12 = nC5, find the value of n.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
Find the number of (ii) triangles
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
Find the number of ways in which : (a) a selection
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
If C (n, 12) = C (n, 8), then C (22, n) is equal to
If nCr + nCr + 1 = n + 1Cx , then x =
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
A convex polygon has 44 diagonals. Find the number of its sides.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.