Advertisements
Advertisements
Question
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
Solution
Out of 17 players, 5 players are bowlers.
A cricket team of 11 players is to be selected in such a way that there are exactly 4 bowlers.
4 bowlers can be selected in `""^5C_4` ways and the remaining 7 players can be selected out of the 12 players in `""^12C_7` ways.
Thus, by multiplication principle, required number of ways of selecting cricket team
= 5C4 x 12C7 = `(5!)/(4! xx 1!) xx (12!)/(7! xx 5!)`
= `5/1 xx (12 xx 11 xx 10 xx 9 xx 8)/(1 xx 2 xx 3 xx 4 xx5)`
= 3960
APPEARS IN
RELATED QUESTIONS
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
Compute:
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
12C10
Evaluate the following:
n + 1Cn
If 8Cr − 7C3 = 7C2, find r.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 20Cr = 20Cr + 4 , then rC3 is equal to
If mC1 = nC2 , then
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
The number of ways in which a host lady can invite for a party of 8 out of 12 people of whom two do not want to attend the party together is
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
The number of diagonals that can be drawn by joining the vertices of an octagon is
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
If n + 1C3 = 2 · nC2 , then n =
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |