English

Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______. - Mathematics

Advertisements
Advertisements

Question

Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.

Fill in the Blanks

Solution

Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is 80.

Explanation:

We have 5 red, 4 white and 3 black balls out of which atleast 2 red balls are to be drawn

∴ Number of ways = 5C2 × 7C1 + 5C3

= 10 × 7 + 10

= 70 + 10

= 80

Hence, the value of the filler = 80.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Permutations and Combinations - Exercise [Page 126]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 7 Permutations and Combinations
Exercise | Q 45 | Page 126

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


How many three-digit numbers are there with no digit repeated?


24Cx = 24C2x + 3, find x.


If n +2C8 : n − 2P4 = 57 : 16, find n.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


A sports team of 11 students is to be constituted, choosing at least 5 from class XI and at least 5 from class XII. If there are 20 students in each of these classes, in how many ways can the teams be constituted?


A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines


If 20Cr = 20Cr−10, then 18Cr is equal to


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is


Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120


Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?


Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.


Find the value of 15C4 


Answer the following:

A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×