English

The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______. - Mathematics

Advertisements
Advertisements

Question

The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.

Options

  • 105

  • 15

  • 175

  • 185

MCQ
Fill in the Blanks

Solution

The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is 185.

Explanation:

Total number of triangles formed from 12 points taking 3 at a time = 12C3

But given that out of 12 points, 7 are collinear

So, these seven points will form no triangle.

∴ The required number of triangles = 12C37C3

= `(12!)/(3!  9!) - (7!)/(3!4!)`

= `(12 xx 11 xx 10 xx 9!)/(3 xx 2 xx 1 xx 9!) - (7 xx 6 xx 5 xx 4!)/(3 xx 2 xx 1 xx 4!)`

= `(12 xx 11 xx 10)/(3 xx 2) - (7 xx 6 xx 5)/(3 xx 2)`

= 220 – 35

= 185

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Permutations and Combinations - Exercise [Page 125]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 7 Permutations and Combinations
Exercise | Q 33 | Page 125

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?


Evaluate the following:

14C3


Evaluate the following:

35C35


From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has(iii) at least 3 girls? 


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.


15C8 + 15C915C615C7 = ______.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×