Advertisements
Advertisements
Question
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
Solution
The possibilities are: 4 from Part A and 6 from Part B
or 5 from Part A and 5 from Part B
or 6 from Part A and 4 from Part B.
Therefore, the required number of ways is
6C4 × 7C6 + 6C5 × 7C5 + 6C6 × 7C4
= 105 + 126 + 35
= 266.
APPEARS IN
RELATED QUESTIONS
In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Compute:
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
Twelve students complete in a race. In how many ways first three prizes be given?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
How many three-digit numbers are there?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
Evaluate the following:
14C3
Evaluate the following:
n + 1Cn
Evaluate the following:
If 2nC3 : nC2 = 44 : 3, find n.
If 16Cr = 16Cr + 2, find rC4.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
How many triangles can be obtained by joining 12 points, five of which are collinear?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
If nC12 = nC8, then n is equal to ______.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.