English

A Group Consists of 4 Girls and 7 Boys. in How Many Ways Can a Team of 5 Members Be Selected If the Team Has (Ii) at Least One Boy and One Girl? - Mathematics

Advertisements
Advertisements

Question

A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl? 

Solution

If the team has at least 1 boy and 1 girl, then the number of ways of selecting 5 members

\[= {}^4 C_1 \times^7 C_4 +^4 C_2 \times^7 C_3 + {}^4 C_3 \times^7 C_2 +^4 C_4 \times^7 C_1 \]
\[ = 140 + 210 + 84 + 7 \]
\[ = 441\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Combinations - Exercise 17.2 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 17 Combinations
Exercise 17.2 | Q 19.2 | Page 16

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If nC8 = nC2, find nC2.


Determine n if  `""^(2n)C_3 : ""^nC_3 = 12 : 1`


Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


Twelve students complete in a race. In how many ways first three prizes be given?


From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?


How many different five-digit number licence plates can be made if

first digit cannot be zero and the repetition of digits is not allowed,


How many different five-digit number licence plates can be made if

the first-digit cannot be zero, but the repetition of digits is allowed?


Evaluate the following:

\[\sum^5_{r = 1} {}^5 C_r\]

 


From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?


Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.


If 20Cr = 20Cr−10, then 18Cr is equal to


If nC12 = nC8 , then n =


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is


There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A convex polygon has 44 diagonals. Find the number of its sides.


Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×