Advertisements
Advertisements
Question
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
Options
246
222
186
none of these
Solution
246
\[\text{Required number of ways} =^4 C_1 \times {}^6 C_4 +^4 C_2 \times {}^6 C_3 +^4 C_3 \times {}^6 C_2 +^4 C_4 \times {}^6 C_1 \]
\[ = 60 + 120 + 60 + 6 \]
\[ = 246\]
APPEARS IN
RELATED QUESTIONS
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
How many three-digit numbers are there with no digit repeated?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If 18Cx = 18Cx + 2, find x.
If 2nC3 : nC2 = 44 : 3, find n.
How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
exclude 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
Find the value of 15C4
Find the value of 15C4 + 15C5
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.