Advertisements
Advertisements
Question
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
Solution
In the word EQUATION, there are 5 vowels, namely, A, E, I, O, and U, and 3 consonants, namely, Q, T, and N.
Sequence of vowel letters = 5! = 5 x 4 x 3 x 2 x 1 = 120
Sequence of consonant letters = 3! = 3 x 2 x 1 = 6
Vowels and letters can be written in 2 ways, take vowels first or take consonants.
Words formed from the letters of the word EQUATION when vowels and consonants come together
120 x 6 x 2 = 1440
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
How many three-digit numbers are there?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
Evaluate the following:
12C10
If n +2C8 : n − 2P4 = 57 : 16, find n.
From a class of 12 boys and 10 girls, 10 students are to be chosen for a competition; at least including 4 boys and 4 girls. The 2 girls who won the prizes last year should be included. In how many ways can the selection be made?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
Find the number of diagonals of , 1.a hexagon
Find the number of diagonals of (ii) a polygon of 16 sides.
Find the number of (i) diagonals
Find the number of (ii) triangles
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If nCr + nCr + 1 = n + 1Cx , then x =
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Find the value of 15C4
Find the value of 80C2
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.