Advertisements
Advertisements
Question
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Solution
There are 8 doctors and 4 lawyers.
We need to select a team of 6 which contains at least one doctor.
Since there are only 4 lawyers any team of 6 will contain at least two doctors.
Required number = `""^12"C"_6` = 924
APPEARS IN
RELATED QUESTIONS
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
Compute:
L.C.M. (6!, 7!, 8!)
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
How many 9-digit numbers of different digits can be formed?
If nC12 = nC5, find the value of n.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
If 15C3r = 15Cr + 3 , then r is equal to
If C (n, 12) = C (n, 8), then C (22, n) is equal to
If nC12 = nC8 , then n =
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
If n + 1C3 = 2 · nC2 , then n =
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
If α = mC2, then αC2 is equal to.
There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to ______.
All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.