English

There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated. - Mathematics

Advertisements
Advertisements

Question

There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.

Sum

Solution

Total number of lamps = 10

The total number of ways in which hall can be illuminated is equal to the number of selection of one or more items out of n different items.

i.e. nC1 + nC2 + nC3 + nC4 + ... + nCn = 2n – 1

From Binomial expansion

We have nC0 + nC1 + nC2 + ... + nCn = 2n

So total number of ways = 10C1 + 10C2 + 10C3 + ... + 10C10

= 210 – 1

= 1024 – 1

= 1023

Hence, the required number of possible ways = 1023.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Permutations and Combinations - Exercise [Page 123]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 7 Permutations and Combinations
Exercise | Q 13 | Page 123

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Determine n if  `""^(2n)C_3 : ""^nC_3 = 12 : 1`


In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl if each cricket team of 11 must include exactly 4 bowlers?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?


If 8Cr − 7C3 = 7C2, find r.


If n +2C8 : n − 2P4 = 57 : 16, find n.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


Find the number of diagonals of , 1.a hexagon


Find the number of diagonals of (ii) a polygon of 16 sides.


In a village, there are 87 families of which 52 families have at most 2 children. In a rural development programme, 20 families are to be helped chosen for assistance, of which at least 18 families must have at most 2 children. In how many ways can the choice be made?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120


There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.


There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.


If α = mC2, then αCis equal to.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


If nC12 = nC8, then n is equal to ______.


The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.


Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×