Advertisements
Advertisements
Question
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Solution
A tea party is arranged for 16 people along two sides of a long table with 8 chairs on each side.
4 people wish to sit on side \[A\] (say) and two on side
Now, 10 people are left, out of which 4 people can be selected for side \[A\] in 10C4 ways.
And, from the remaining people, 6 people can be selected for side B in 6C6 ways.
∴ Number of selections = \[{}^{10} C_4 \times {}^6 C_6\]
∴ Total number ways in which the people can be seated =
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
Compute:
(i)\[\frac{30!}{28!}\]
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If 15Cr : 15Cr − 1 = 11 : 5, find r.
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
If 15C3r = 15Cr + 3 , then r is equal to
If mC1 = nC2 , then
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A convex polygon has 44 diagonals. Find the number of its sides.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.
The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.