हिंदी

A Tea Party is Arranged for 16 Persons Along Two Sides of a Long Table with 8 Chairs on Each Side. Four Persons Wish to Sit on One Particular Side and Two on the Other Side. in How Many Ways Can - Mathematics

Advertisements
Advertisements

प्रश्न

A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?

उत्तर

A tea party is arranged for 16 people along two sides of a long table with 8 chairs on each side.
4 people wish to sit on side \[A\]  (say) and two on side

\[B\](say).
Now, 10 people are left, out of which 4 people can be selected for side \[A\] in 10C4 ways.
And, from the remaining people, 6 people can be selected for side B in 6C6 ways.
∴ Number of selections  = \[{}^{10} C_4 \times {}^6 C_6\]
Now, 8 people on each side can be arranged in \[8!\]ways.
∴ Total number ways in which the people can be seated  =
\[{}^{10} C_4 \times {}^6 C_6 \times 8! \times 8! = {10}_{C_4} \times \left( 8! \right)^2\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.3 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.3 | Q 11 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


In how many ways can an examinee answer a set of ten true/false type questions?


From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


In how many ways can six persons be seated in a row?


How many 9-digit numbers of different digits can be formed?


Evaluate the following:

35C35


If 18Cx = 18Cx + 2, find x.


If nC4 , nC5 and nC6 are in A.P., then find n.


From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


If 15C3r = 15Cr + 3 , then r is equal to


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to


The number of diagonals that can be drawn by joining the vertices of an octagon is


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3


Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120


Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.


There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?


If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.


The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×