Advertisements
Advertisements
Question
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
Solution
Number of ways of answering the first three questions = 4 each
Number of ways of answering the remaining three questions = 2 each
∴ Total number of ways of answering all the questions = 4\[\times\]4\[\times\]4\[\times\]2\[\times\]2\[\times\]2 = 512
APPEARS IN
RELATED QUESTIONS
If nC8 = nC2, find nC2.
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
Compute:
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
How many three-digit numbers are there with no digit repeated?
How many three-digit numbers are there?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
14C3
If 18Cx = 18Cx + 2, find x.
In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
If 20Cr = 20Cr + 4 , then rC3 is equal to
If nCr + nCr + 1 = n + 1Cx , then x =
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
If 43Cr − 6 = 43C3r + 1 , then the value of r is
Find n and r if `""^"n""P"_"r"` = 720 and `""^"n""C"_("n" - "r")` = 120
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.