Advertisements
Advertisements
प्रश्न
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
उत्तर
Number of ways of answering the first three questions = 4 each
Number of ways of answering the remaining three questions = 2 each
∴ Total number of ways of answering all the questions = 4\[\times\]4\[\times\]4\[\times\]2\[\times\]2\[\times\]2 = 512
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
Compute:
L.C.M. (6!, 7!, 8!)
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?
In how many ways can an examinee answer a set of ten true/false type questions?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
In how many ways can six persons be seated in a row?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
If 18Cx = 18Cx + 2, find x.
If 15C3r = 15Cr + 3, find r.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
How many triangles can be obtained by joining 12 points, five of which are collinear?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.
How many committee of five persons with a chairperson can be selected from 12 persons.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C2 – 5C2.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.