मराठी

The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.

रिकाम्या जागा भरा

उत्तर

The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is 35.

Explanation:

The following may be the arrangement of (–) and (+)

(–) (+) (–) (+) (–) (+) (–) (+) (–) (+) (–) (+) (–)

Therefore, ‘+’ sign can be arranged only is 1 way because all are identical.

And 4(–) signs can be arranged at 7 places in 7C4 ways

∴ Total number of ways = 7C4 × 1

= `(7 xx 6 xx 5 xx 4)/(4 xx 3 xx 2 xx 1) xx 1`

= 35 ways

Hence, the value of the filler is 35.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Permutations and Combinations - Exercise [पृष्ठ १२६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 7 Permutations and Combinations
Exercise | Q 48 | पृष्ठ १२६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:

(i) exactly 3 girls?

(ii) atleast 3 girls?

(iii) atmost 3 girls?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


Evaluate the following:

14C3


Evaluate the following:

35C35


If nC10 = nC12, find 23Cn.


If n +2C8 : n − 2P4 = 57 : 16, find n.


If nC4 , nC5 and nC6 are in A.P., then find n.


How many different boat parties of 8, consisting of 5 boys and 3 girls, can be made from 25 boys and 10 girls?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?


In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.


If nCr + nCr + 1 = n + 1Cx , then x =


There are 12 points in a plane. The number of the straight lines joining any two of them when 3 of them are collinear, is


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least three girls.


The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.


There are 12 points in a plane of which 5 points are collinear, then the number of lines obtained by joining these points in pairs is 12C25C2.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.


A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×