मराठी

If N +2c8 : N − 2p4 = 57 : 16, Find N. - Mathematics

Advertisements
Advertisements

प्रश्न

If n +2C8 : n − 2P4 = 57 : 16, find n.

उत्तर

\[\Rightarrow \frac{{}^{n + 2} C_8}{{}^{n - 2} P_4} = \frac{57}{16}\]
\[ \Rightarrow \frac{(n + 2)!}{8! (n - 6)!} \times \frac{(n - 6)!}{(n - 2)!} = \frac{57}{16}\]
\[ \Rightarrow \frac{(n + 2) (n + 1) n (n - 1) (n - 2)!}{8!} \times \frac{1}{(n - 2)!} = \frac{57}{16}\]
\[ \Rightarrow (n + 2) (n + 1) n (n - 1) = \frac{57}{16} \times 8! = \frac{19 \times 3}{16} \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1\]
\[ \Rightarrow (n + 2) (n + 1) n (n - 1) = 143640\]
\[ \Rightarrow (n - 1) n (n + 1) (n + 2) = 19 \times 3 \times 7 \times 6 \times 5 \times 4 \times 3\]
\[ \Rightarrow (n - 1) n (n + 1) (n + 2) = 19 \times (3 \times 7) \times (6 \times 3) \times (4 \times 5)\]
\[ \Rightarrow (n - 1) n (n + 1) (n + 2) = 18 \times 19 \times 20 \times 21\]
\[ \Rightarrow n - 1 = 18\]
\[ \Rightarrow n = 19\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Combinations - Exercise 17.1 [पृष्ठ ८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 17 Combinations
Exercise 17.1 | Q 10 | पृष्ठ ८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?


The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


Prove that

\[\frac{1}{9!} + \frac{1}{10!} + \frac{1}{11!} = \frac{122}{11!}\]

Twelve students complete in a race. In how many ways first three prizes be given?


From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?


How many three-digit odd numbers are there?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


If α = mC2, then find the value of αC2.


From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

 exclude 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


How many triangles can be obtained by joining 12 points, five of which are collinear?


In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?


How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?


Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


If 15C3r = 15Cr + 3 , then r is equal to


If mC1 nC2 , then


If nC12 = nC8 , then n =


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


Find the value of 80C2


In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?


The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.


How many committee of five persons with a chairperson can be selected from 12 persons.


A convex polygon has 44 diagonals. Find the number of its sides.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls


If nC12 = nC8, then n is equal to ______.


A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.


A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed is ______.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×