Advertisements
Advertisements
प्रश्न
Find the value of 80C2
उत्तर
80C2 = `(80!)/(2!(80 - 2)!)`
= `(80!)/(2! 78!)`
= `(80 xx 79 xx 78!)/(2 xx 78!)`
= 40 × 79
= 3160
APPEARS IN
संबंधित प्रश्न
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
Compute:
Prove that
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?
Evaluate the following:
n + 1Cn
Evaluate the following:
If 15C3r = 15Cr + 3, find r.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
If nC4 , nC5 and nC6 are in A.P., then find n.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
Find the number of ways in which : (a) a selection
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
If 20Cr = 20Cr−10, then 18Cr is equal to
If 20Cr = 20Cr + 4 , then rC3 is equal to
If C (n, 12) = C (n, 8), then C (22, n) is equal to
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
The number of diagonals that can be drawn by joining the vertices of an octagon is
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Five students are selected from 11. How many ways can these students be selected if two specified students are not selected?
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.