Advertisements
Advertisements
प्रश्न
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
पर्याय
16C11
16C5
16C9
20C9
उत्तर
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is 16C9 .
Explanation:
Total number of players = 22
2 players are always included and 4 are always excluding
Or never included = 22 – 2 – 4 = 16
∴ Required number of selection = 16C9
APPEARS IN
संबंधित प्रश्न
Compute:
(i)\[\frac{30!}{28!}\]
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
How many different five-digit number licence plates can be made if
the first-digit cannot be zero, but the repetition of digits is allowed?
How many four digit different numbers, greater than 5000 can be formed with the digits 1, 2, 5, 9, 0 when repetition of digits is not allowed?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
If 18Cx = 18Cx + 2, find x.
If n +2C8 : n − 2P4 = 57 : 16, find n.
If α = mC2, then find the value of αC2.
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is included.
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?
How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?
If nCr + nCr + 1 = n + 1Cx , then x =
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
If 43Cr − 6 = 43C3r + 1 , then the value of r is
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
The value of `""^50"C"_4 + sum_("r" = 1)^6 ""^(56 - "r")"C"_3` is ______.
Total number of 6-digit numbers in which only and all the five digits 1, 3, 5, 7 and 9 appear is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.