हिंदी

The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.

विकल्प

  • 16C11 

  • 16C5 

  • 16C9 

  • 20C9 

MCQ
रिक्त स्थान भरें

उत्तर

The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is 16C9 .

Explanation:

Total number of players = 22

2 players are always included and 4 are always excluding

Or never included = 22 – 2 – 4 = 16

∴ Required number of selection = 16C9 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Permutations and Combinations - Exercise [पृष्ठ १२५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 7 Permutations and Combinations
Exercise | Q 35 | पृष्ठ १२५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 12 : 1`


How many chords can be drawn through 21 points on a circle?


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


In how many ways can an examinee answer a set of ten true/false type questions?


How many three-digit numbers are there?


How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?


If nC10 = nC12, find 23Cn.


If 18Cx = 18Cx + 2, find x.


If 15Cr : 15Cr − 1 = 11 : 5, find r.


If 2nC3 : nC2 = 44 : 3, find n.


If α = mC2, then find the value of αC2.


From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?


There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is


How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120


If 43Cr − 6 = 43C3r + 1 , then the value of r is


Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.


There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:

C1 C2
(a) One book of each subject; (i) 3968
(b) At least one book of each subject: (ii) 60
(c) At least one book of English: (iii) 3255

Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×