हिंदी

If 2nc3 : Nc2 = 44 : 3, Find N. - Mathematics

Advertisements
Advertisements

प्रश्न

If 2nC3 : nC2 = 44 : 3, find n.

उत्तर

Given: 

\[2 n_{C_3} : n_{C_2} = 44: 3\]
\[\frac{2 n_{C_3}}{n_{C_2}} = \frac{44}{3}\]
\[ \Rightarrow \frac{2n!}{3! (2n - 3)!} \times \frac{2! (n - 2)!}{n!} = \frac{44}{3}\]
\[ \Rightarrow \frac{2n (2n - 1) (2n - 2)}{3 n (n - 1)} = \frac{44}{3}\]
\[ \Rightarrow (2n - 1) (2n - 2) = 22 (n - 1)\]
\[ \Rightarrow 4 n^2 - 6n + 2 = 22n - 22\]
\[ \Rightarrow 4 n^2 - 28n + 24 = 0\]
\[ \Rightarrow n^2 - 7n + 6 = 0\]
\[ \Rightarrow n^2 - 6n - n + 6 = 0\]
\[ \Rightarrow n (n - 6) - 1(n - 6) = 0\]
\[ \Rightarrow (n - 1) (n - 6) = 0\]
\[\Rightarrow n = 1\]   or,  
\[n = 6\]
Now, 
\[n = 1 \Rightarrow 2_{C_3} : 2_{C_2} = 44: 3\]
But, this is not possible.
∴ \[n = 6\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Combinations - Exercise 17.1 [पृष्ठ ८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 17 Combinations
Exercise 17.1 | Q 13 | पृष्ठ ८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Determine n if  `""^(2n)C_3 : ""^nC_3 = 11: 1`


How many chords can be drawn through 21 points on a circle?


From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?


There are four parcels and five post-offices. In how many different ways can the parcels be sent by registered post?


How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?


Evaluate the following:

12C10


Evaluate the following:

\[\sum^5_{r = 1} {}^5 C_r\]

 


If nC4 = nC6, find 12Cn.


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


In how many ways can a football team of 11 players be selected from 16 players? How many of these will

include 2 particular players?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is included.


How many different selections of 4 books can be made from 10 different books, if
there is no restriction;


In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.


A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.


If 20Cr + 1 = 20Cr − 1 , then r is equal to


If nC12 = nC8 , then n =


5C1 + 5C2 5C3 + 5C4 +5C5 is equal to


Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


If n + 1C3 = 2 · nC2 , then n =


There are 8 doctors and 4 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.


A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?


All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.


We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?


There are 10 lamps in a hall. Each one of them can be switched on independently. Find the number of ways in which the hall can be illuminated.


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.


There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


All possible numbers are formed using the digits 1, 1, 2, 2, 2, 2, 3, 4, 4 taken all at a time. The number of such numbers in which the odd digits occupy even places is ______.


Number of selections of at least one letter from the letters of MATHEMATICS, is ______.


The no. of different ways, the letters of the word KUMARI can be placed in the 8 boxes of the given figure so that no row remains empty will be ______.


From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×