Advertisements
Advertisements
प्रश्न
Evaluate the following:
उत्तर
We have,
[∵\[{}^n C_r = {}^n C_{n - r}\]]
[∵\[{}^n C_r = \frac{n}{r} {}^{n - 1} C_{r - 1}\]]
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 12 : 1`
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
Given 7 flags of different colours, how many different signals can be generated if a signal requires the use of two flags, one below the other?
How many four-digit numbers can be formed with the digits 3, 5, 7, 8, 9 which are greater than 7000, if repetition of digits is not allowed?
How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?
If 15C3r = 15Cr + 3, find r.
If 15Cr : 15Cr − 1 = 11 : 5, find r.
If 28C2r : 24C2r − 4 = 225 : 11, find r.
How many different products can be obtained by multiplying two or more of the numbers 3, 5, 7, 11 (without repetition)?
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
Find the number of (i) diagonals
Find the number of (ii) triangles
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: at least 3 girls?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (ii) triangles can be formed by joining them?
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
There are 3 letters and 3 directed envelopes. Write the number of ways in which no letter is put in the correct envelope.
If 20Cr = 20Cr + 4 , then rC3 is equal to
If mC1 = nC2 , then
If\[\ ^{( a^2 - a)}{}{C}_2 = \ ^{( a^2 - a)}{}{C}_4\] , then a =
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
There are 13 players of cricket, out of which 4 are bowlers. In how many ways a team of eleven be selected from them so as to include at least two bowlers?
If 43Cr − 6 = 43C3r + 1 , then the value of r is
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
15C8 + 15C9 – 15C6 – 15C7 = ______.
There are 3 books on Mathematics, 4 on Physics and 5 on English. How many different collections can be made such that each collection consists of:
C1 | C2 |
(a) One book of each subject; | (i) 3968 |
(b) At least one book of each subject: | (ii) 60 |
(c) At least one book of English: | (iii) 3255 |
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.