Advertisements
Advertisements
प्रश्न
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
उत्तर
Given that nCr – 1 = 36 ......(i)
nCr = 84 ......(ii)
nCr + 1 = 126 ......(iii)
Dividing equation (i) by equation (ii) we get
`(""^n"c"_(r - 1))/(""^n"C"_1) = 36/84`
⇒ `((n!)/((r - 1)!(n - r + 1)!))/((n!)/(r!(n - r)!)) = 3/7` .......`[because ""^n"C"_r = (n!)/(r!(n - r)!)]`
⇒ `(n!)/((r - 1)!(n - r + 1)!) xx (r!(n - r)!)/(n1) = 3/7`
⇒ `(r*(r - 1)!(n - r)!)/((r - 1)!(n - r + 1)(n - r)!) = 3/7`
⇒ `r/(n - r + 1) = 3/7`
⇒ 3n – 3r + 3 = 7r
⇒ 3n – 10r = – 3 ......(iv)
Now dividing equation (ii) by equation (iii), we get
`(""^n"C"_r)/(""^n"C"_(r + 1)) = 84/126`
⇒ `((n1)/(r!(n - r)!))/((n!)/((r + 1)!(n - r - 1)!)) = 2/3`
⇒ `(n!)/(r!(n - r)!) xx ((r + 1)! (n - r - 1)1)/(n!) = 2/3`
⇒ `((r + 1) * r!(n - r - 1)!)/(r!(n - r)(n - r - 1)!) = 2/3`
⇒ `(r + 1)/(n - r) = 2/3`
⇒ 2n – 2r = 3r + 3
⇒ 2n – 5r = 3 ....(v)
Solving equation (iv) and (v) we have
3n – 10r = – 3
2n – 5r = 3
3n – 10r = – 3
4n – 10r = 6
(–) (+) (–)
– n = – 9 ⇒ n = 9
∴ 2 × 9 – 5r = 3
⇒ 18 – 5r = 3
⇒ r = `15/5` = 3
So, rC2 = 3C2
= `(3!)/(2!(3 - 2)!)` = 3
Hence, the value of rC2 = 3.
APPEARS IN
संबंधित प्रश्न
Determine n if `""^(2n)C_3 : ""^nC_3 = 11: 1`
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
If the different permutations of all the letter of the word EXAMINATION are listed as in a dictionary, how many words are there in this list before the first word starting with E?
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
From Goa to Bombay there are two roots; air, and sea. From Bombay to Delhi there are three routes; air, rail and road. From Goa to Delhi via Bombay, how many kinds of routes are there?
There are 5 books on Mathematics and 6 books on Physics in a book shop. In how many ways can a students buy : (i) a Mathematics book and a Physics book (ii) either a Mathematics book or a Physics book?
How many A.P.'s with 10 terms are there whose first term is in the set {1, 2, 3} and whose common difference is in the set {1, 2, 3, 4, 5}?
From among the 36 teachers in a college, one principal, one vice-principal and the teacher-incharge are to be appointed. In how many ways can this be done?
Evaluate the following:
n + 1Cn
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. In how many ways can he choose the 7 questions?
In how many ways can a committee of 5 persons be formed out of 6 men and 4 women when at least one woman has to be necessarily selected?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Find the number of (ii) triangles
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
If 15C3r = 15Cr + 3 , then r is equal to
There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
Find the value of 15C4 + 15C5
A student has to answer 10 questions, choosing atleast 4 from each of Parts A and B. If there are 6 questions in Part A and 7 in Part B, in how many ways can the student choose 10 questions?
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
A box contains 2 white balls, 3 black balls and 4 red balls. The number of ways three balls be drawn from the box if at least one black ball is to be included in the draw is ______.