Advertisements
Advertisements
प्रश्न
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
उत्तर
A businessman hosts a dinner for 21 guests.
15 people can be accommodated at one table in 21C15 ways. They can arrange themselves in \[\left( 15 - 1 \right)! = 14!\]ways.
The remaining 6 people can be accommodated at another table in 6C6 ways. They can arrange themselves in\[\left( 6 - 1 \right)! = 5!\] ways.
∴ Total number of ways =\[{}^{21} C_{15} \times^6 C_6 \times 14! \times 5! =^{21} C_{15} \times 14! \times 5!\]
APPEARS IN
संबंधित प्रश्न
If nC8 = nC2, find nC2.
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of:
(i) exactly 3 girls?
(ii) atleast 3 girls?
(iii) atmost 3 girls?
The English alphabet has 5 vowels and 21 consonants. How many words with two different vowels and 2 different consonants can be formed from the alphabet?
It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
How many three-digit odd numbers are there?
Since the number has to be greater than 8000, the thousand's place can be filled by only two digits, i.e. 8 and 9.
Now, the hundred's place can be filled with the remaining 4 digits as the repetition of the digits is not allowed.
The ten's place can be filled with the remaining 3 digits.
The unit's place can be filled with the remaining 2 digits.
Total numbers that can be formed = `2xx4xx3xx2=48`
How many 9-digit numbers of different digits can be formed?
In how many ways can a football team of 11 players be selected from 16 players? How many of these will
include 2 particular players?
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular student is excluded.
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
From 4 officers and 8 jawans in how many ways can 6 be chosen (i) to include exactly one officer
From 4 officers and 8 jawans in how many ways can 6 be chosen. to include at least one officer?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
There are 10 points in a plane of which 4 are collinear. How many different straight lines can be drawn by joining these points.
How many triangles can be obtained by joining 12 points, five of which are collinear?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?
In how many ways can a team of 3 boys and 3 girls be selected from 5 boys and 4 girls?
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.
Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?
Find n if `""^6"P"_2 = "n" ""^6"C"_2`
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Answer the following:
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?
A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
If nCr – 1 = 36, nCr = 84 and nCr + 1 = 126, then find rC2.
A convex polygon has 44 diagonals. Find the number of its sides.
Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.
Eighteen guests are to be seated, half on each side of a long table. Four particular guests desire to sit on one particular side and three others on other side of the table. The number of ways in which the seating arrangements can be made is `(11!)/(5!6!) (9!)(9!)`.
There are (n + 1) white and (n + 1) black balls each set numbered 1 to (n + 1). The number of ways in which the balls can be arranged in row so that the adjacent balls are of different colours is ______.
There are 12 persons seated in a line. Number of ways in which 3 persons can be selected such that atleast two of them are consecutive, is ______.
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.