Advertisements
Advertisements
प्रश्न
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
उत्तर
Out of 25 students, 10 students are to be included in the tour group. But 3 out of 10 students are like this
(i) When all three join the touring party or
(ii) All three do not happen.
(i) Methods of selecting the excursion group when three students join the team = 22C7
(ii) Methods of selection when all three students are not included in the tour group = 22C10
Methods of selecting the touring party in both the cases = 22C7 + 22C10
APPEARS IN
संबंधित प्रश्न
How many chords can be drawn through 21 points on a circle?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?
How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
In a class there are 27 boys and 14 girls. The teacher wants to select 1 boy and 1 girl to represent the class in a function. In how many ways can the teacher make this selection?
In how many ways can an examinee answer a set of ten true/false type questions?
A letter lock consists of three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock?
Twelve students complete in a race. In how many ways first three prizes be given?
A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.
Evaluate the following:
12C10
If nC10 = nC12, find 23Cn.
If 15Cr : 15Cr − 1 = 11 : 5, find r.
There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
How many different selections of 4 books can be made from 10 different books, if
two particular books are always selected;
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
Find the number of diagonals of , 1.a hexagon
A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?
In how many ways can a student choose a programme of 5 courses if 9 courses are available and 2 specific courses are compulsory for every student?
If 20Cr = 20Cr−10, then 18Cr is equal to
If 20Cr + 1 = 20Cr − 1 , then r is equal to
Total number of words formed by 2 vowels and 3 consonants taken from 4 vowels and 5 consonants is equal to
If C0 + C1 + C2 + ... + Cn = 256, then 2nC2 is equal to
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
If 43Cr − 6 = 43C3r + 1 , then the value of r is
Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?
In how many ways a committee consisting of 3 men and 2 women, can be chosen from 7 men and 5 women?
All the letters of the word ‘EAMCOT’ are arranged in different possible ways. The number of such arrangements in which no two vowels are adjacent to each other is ______.
A convex polygon has 44 diagonals. Find the number of its sides.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.
The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie on the same line is ______.
Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?