Advertisements
Advertisements
प्रश्न
How many chords can be drawn through 21 points on a circle?
उत्तर
For drawing one chord on a circle, only 2 points are required.
To know the number of chords that can be drawn through the given 21 points on a circle, the number of combinations have to be counted.
Therefore, there will be as many chords as there are combinations of 21 points taken 2 at a time.
Thus, required number of chords =
= 21C2 = `(21!)/(2!(21 - 2)!) = (21!)/(2!19!)`
= `(21 xx 20)/(1 xx 2)`
= 210
APPEARS IN
संबंधित प्रश्न
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?
Determine the number of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king.
From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them will join or none of them will join. In how many ways can the excursion party be chosen?
Prove that
A person wants to buy one fountain pen, one ball pen and one pencil from a stationery shop. If there are 10 fountain pen varieties, 12 ball pen varieties and 5 pencil varieties, in how many ways can he select these articles?
How many 3-digit numbers are there, with distinct digits, with each digit odd?
How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?
If 15Cr : 15Cr − 1 = 11 : 5, find r.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?
In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?
Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. How many (i) straight lines
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
A tea party is arranged for 16 persons along two sides of a long table with 8 chairs on each side. Four persons wish to sit on one particular side and two on the other side. In how many ways can they be seated?
Write \[\sum^m_{r = 0} \ ^{n + r}{}{C}_r\] in the simplified form.
How many different committees of 5 can be formed from 6 men and 4 women on which exact 3 men and 2 women serve?
(a) 6
(b) 20
(c) 60
(d) 120
Find n if `""^(2"n")"C"_3: ""^"n""C"_2` = 52:3
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 5 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 players is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Find the value of 20C16 – 19C16
In a small village, there are 87 families, of which 52 families have atmost 2 children. In a rural development programme 20 families are to be chosen for assistance, of which atleast 18 families must have at most 2 children. In how many ways can the choice be made?
The straight lines l1, l2 and l3 are parallel and lie in the same plane. A total numbers of m points are taken on l1; n points on l2, k points on l3. The maximum number of triangles formed with vertices at these points are ______.
We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can selections be made?
If 20 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, in how many points will they intersect each other?
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
In how many ways can a football team of 11 players be selected from 16 players? How many of them will exclude 2 particular players?
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has no girls
The number of ways in which a team of eleven players can be selected from 22 players always including 2 of them and excluding 4 of them is ______.
15C8 + 15C9 – 15C6 – 15C7 = ______.
Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.
A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women. In how many different ways can this be done if two particular women refuse to serve on the same committee ______.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.
The number of numbers between 2,000 and 5,000 that can be formed with the digits 0, 1, 2, 3, 4, (repetition of digits is not allowed) and are multiple of 3 is?
There are ten boys B1, B2, ...., B10 and five girls G1, G2, ...., G5 in a class. Then the number of ways of forming a group consisting of three boys and three girls, if both B1 and B2 together should not be the members of a group is ______.
From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then, the number of such arrangements is ______.