हिंदी

In an Examination, a Question Paper Consists of 12 Questions Divided into Two Parts I.E., Part I and Part Ii, Containing 5 and 7 Questions, Respectively - Mathematics

Advertisements
Advertisements

प्रश्न

In an examination, a question paper consists of 12 questions divided into two parts i.e., Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?

योग

उत्तर

It is given that the question paper consists of 12 questions divided into two parts – Part I and Part II, containing 5 and 7 questions, respectively.

A student has to attempt 8 questions, selecting at least 3 from each part.

This can be done as follows.

  1. 3 questions from part I and 5 questions from part II
  2. 4 questions from part I and 4 questions from part II
  3. 5 questions from part I and 3 questions from part II

3 questions from part I and 5 questions from part II can be selected in `""^5C_3 xx ""^7C_5`ways.

4 questions from part I and 4 questions from part II can be selected in `""^5C_4 xx ""^7C_4` ways.

5 questions from part I and 3 questions from part II can be selected in `""^5C_5 xx  ""^7C_3` ways.

Thus, required number of ways of selecting questions

= 5C3 x 7C5 + 5C4 x 7C4 + 5C5 x 7C3

= `(5!)/(2!3!) xx (7!)/(2!5!) xx (5!)/(4!1!) xx (7!)/(4!3!) xx (5!)/(5!0!) xx (7!)/(3!4!)` 

= `(5 xx 4)/(2) xx (7 xx 6)/(2) + 5 xx (7 xx 6 xx 5)/(3 xx 2) + 1 xx (7xx 6 xx 5)/(3 xx 2)`

= 210 + 175 + 35

= 420

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Permutations and Combinations - Miscellaneous Exercise [पृष्ठ १५७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 7 Permutations and Combinations
Miscellaneous Exercise | Q 7 | पृष्ठ १५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

How many chords can be drawn through 21 points on a circle?


How many words, with or without meaning, can be formed using all the letters of the word EQUATION at a time so that the vowels and consonants occur together?


How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9 which are divisible by 10 and no digit is repeated?


It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many such arrangements are possible?


How many three-digit numbers are there with no digit repeated?


In how many ways can six persons be seated in a row?


How many odd numbers less than 1000 can be formed by using the digits 0, 3, 5, 7 when repetition of digits is not allowed?


How many different numbers of six digits each can be formed from the digits 4, 5, 6, 7, 8, 9 when repetition of digits is not allowed?


Evaluate the following:

\[\sum^5_{r = 1} {}^5 C_r\]

 


24Cx = 24C2x + 3, find x.


If 15Cr : 15Cr − 1 = 11 : 5, find r.


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:
a particular professor is included.


A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (i) no girl?


A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?


Find the number of (ii) triangles


Determine the number of 5 cards combinations out of a deck of 52 cards if at least one of the 5 cards has to be a king?


A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected.


A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: atmost 3 girls?


A parallelogram is cut by two sets of m lines parallel to its sides. Find the number of parallelograms thus formed.


How many different words, each containing 2 vowels and 3 consonants can be formed with 5 vowels and 17 consonants?


If mC1 nC2 , then


Three persons enter a railway compartment. If there are 5 seats vacant, in how many ways can they take these seats?


In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?


There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two of them is


The number of diagonals that can be drawn by joining the vertices of an octagon is


The value of\[\left( \ ^{7}{}{C}_0 + \ ^{7}{}{C}_1 \right) + \left( \ ^{7}{}{C}_1 + \ ^{7}{}{C}_2 \right) + . . . + \left( \ ^{7}{}{C}_6 + \ ^{7}{}{C}_7 \right)\] is


A student finds 7 books of his interest, but can borrow only three books. He wants to borrow Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.


Find the number of ways of dividing 20 objects in three groups of sizes 8, 7, and 5.


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?


A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they must all be of the same colour.


The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is ______.


The number of ways in which we can choose a committee from four men and six women so that the committee includes at least two men and exactly twice as many women as men is ______.


Given 5 different green dyes, four different blue dyes and three different red dyes, the number of combinations of dyes which can be chosen taking at least one green and one blue dye is ______.


Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.


To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.


There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.


If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is (4a.5b.6c.7d), (where a, b, c, d ∈ N), then a + b + c + d is equal to ______.


A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×