Advertisements
Advertisements
Question
A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?
Solution
A businessman hosts a dinner for 21 guests.
15 people can be accommodated at one table in 21C15 ways. They can arrange themselves in \[\left( 15 - 1 \right)! = 14!\]ways.
The remaining 6 people can be accommodated at another table in 6C6 ways. They can arrange themselves in\[\left( 6 - 1 \right)! = 5!\] ways.
∴ Total number of ways =\[{}^{21} C_{15} \times^6 C_6 \times 14! \times 5! =^{21} C_{15} \times 14! \times 5!\]
APPEARS IN
RELATED QUESTIONS
How many chords can be drawn through 21 points on a circle?
Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in each combination.
Compute:
(i)\[\frac{30!}{28!}\]
There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?
A team consists of 6 boys and 4 girls and other has 5 boys and 3 girls. How many single matches can be arranged between the two teams when a boy plays against a boy and a girl plays against a girl?
Twelve students complete in a race. In how many ways first three prizes be given?
How many different five-digit number licence plates can be made if
first digit cannot be zero and the repetition of digits is not allowed,
Serial numbers for an item produced in a factory are to be made using two letters followed by four digits (0 to 9). If the letters are to be taken from six letters of English alphabet without repetition and the digits are also not repeated in a serial number, how many serial numbers are possible?
Evaluate the following:
35C35
If nC10 = nC12, find 23Cn.
From a group of 15 cricket players, a team of 11 players is to be chosen. In how many ways can this be done?
How many different selections of 4 books can be made from 10 different books, if
there is no restriction;
A student has to answer 10 questions, choosing at least 4 from each of part A and part B. If there are 6 questions in part A and 7 in part B, in how many ways can the student choose 10 questions?
Find the number of diagonals of , 1.a hexagon
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has (ii) at least one boy and one girl?
A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of: exactly 3 girls?
Find the number of ways in which : (a) a selection
Find the number of ways in which : (b) an arrangement, of four letters can be made from the letters of the word 'PROPORTION'.
5C1 + 5C2 + 5C3 + 5C4 +5C5 is equal to
In how many ways can a committee of 5 be made out of 6 men and 4 women containing at least one women?
Given 11 points, of which 5 lie on one circle, other than these 5, no 4 lie on one circle. Then the number of circles that can be drawn so that each contains at least 3 of the given points is
If 43Cr − 6 = 43C3r + 1 , then the value of r is
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
If α = mC2, then αC2 is equal to.
A bag contains 5 black and 6 red balls. Determine the number of ways in which 2 black and 3 red balls can be selected from the lot.
A box contains two white, three black and four red balls. In how many ways can three balls be drawn from the box, if atleast one black ball is to be included in the draw
In an examination, a student has to answer 4 questions out of 5 questions; questions 1 and 2 are however compulsory. Determine the number of ways in which the student can make the choice.
A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if two must be white and two red
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if the team has at least one boy and one girl
The total number of ways in which six ‘+’ and four ‘–’ signs can be arranged in a line such that no two signs ‘–’ occur together is ______.
If some or all of n objects are taken at a time, the number of combinations is 2n – 1.
A candidate is required to answer 7 questions out of 12 questions which are divided into two groups, each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.
To fill 12 vacancies there are 25 candidates of which 5 are from scheduled castes. If 3 of the vacancies are reserved for scheduled caste candidates while the rest are open to all, the number of ways in which the selection can be made is 5C3 × 20C9.
There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:
C1 | C2 |
(a) In how many ways committee: can be formed | (i) 10C2 × 19C3 |
(b) In how many ways a particular: professor is included | (ii) 10C2 × 19C2 |
(c) In how many ways a particular: lecturer is included | (iii) 9C1 × 20C3 |
(d) In how many ways a particular: lecturer is excluded | (iv) 10C2 × 20C3 |
There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is ______.
Number of selections of at least one letter from the letters of MATHEMATICS, is ______.
A badminton club has 10 couples as members. They meet to organise a mixed double match. If each wife refers to p artner as well as oppose her husband in the match, then the number of different ways can the match off will be ______.