हिंदी

In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is ______.

रिक्त स्थान भरें

उत्तर

In a football championship, 153 matches were played, Every two teams played one match with each other. The number of teams, participating in the championship is 18.

Explanation:

Let the number of participating teams be n

Given that every two teams played one match with each other.

∴ Total number of matches played = nC2

So nC2 = 153

⇒ `(n(n - 1))/2` = 153

⇒ n2 – n = 306

⇒ n2 – n – 306 = 0

⇒ n2 – 18n + 17n – 306 = 0

⇒ n(n – 18) + 17(n – 18) = 0

⇒ (n – 18)(n + 17) = 0

⇒ n – 18 = 0 and n + 17 = 0

⇒ n = 18, n ≠ – 17

Hence, the value of the filler is 18.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Permutations and Combinations - Exercise [पृष्ठ १२६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 7 Permutations and Combinations
Exercise | Q 47 | पृष्ठ १२६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If nC8 = nC2, find nC2.


Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.


A mint prepares metallic calendars specifying months, dates and days in the form of monthly sheets (one plate for each month). How many types of calendars should it prepare to serve for all the possibilities in future years?


A coin is tossed five times and outcomes are recorded. How many possible outcomes are there?


There are 6 multiple choice questions in an examination. How many sequences of answers are possible, if the first three questions have 4 choices each and the next three have 2 each?


How many different numbers of six digits can be formed from the digits 3, 1, 7, 0, 9, 5 when repetition of digits is not allowed?


A number lock on a suitcase has 3 wheels each labelled with ten digits 0 to 9. If opening of the lock is a particular sequence of three digits with no repeats, how many such sequences will be possible? Also, find the number of unsuccessful attempts to open the lock.


24Cx = 24C2x + 3, find x.


If 28C2r : 24C2r − 4 = 225 : 11, find r.


In how many ways can a student choose 5 courses out of 9 courses if 2 courses are compulsory for every student?


There are 10 professors and 20 students out of whom a committee of 2 professors and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees:

a particular student is excluded.


In how many ways can one select a cricket team of eleven from 17 players in which only 5 persons can bowl if each cricket team of 11 must include exactly 4 bowlers?


Find the number of ways in which : (a) a selection


How many words can be formed by taking 4 letters at a time from the letters of the word 'MORADABAD'?


A business man hosts a dinner to 21 guests. He is having 2 round tables which can accommodate 15 and 6 persons each. In how many ways can he arrange the guests?


Find the number of combinations and permutations of 4 letters taken from the word 'EXAMINATION'.


If 20Cr = 20Cr−10, then 18Cr is equal to


If mC1 nC2 , then


Among 14 players, 5 are bowlers. In how many ways a team of 11 may be formed with at least 4 bowlers?


A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends if two of the friends will not attend the party together is


Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms that can be formed.


The value of `(""^9"C"_0 + ""^9"C"_1) + (""^9"C"_1 + ""^9"C"_2) + ... + (""^9"C"_8 + ""^9"C"_9)` is ______ 


In how many ways can the letters of the word 'IMAGE' be arranged so that the vowels should always occupy odd places?


How many committee of five persons with a chairperson can be selected from 12 persons.


A bag contains six white marbles and five red marbles. Find the number of ways in which four marbles can be drawn from the bag if they can be of any colour


In how many ways can a football team of 11 players be selected from 16 players? How many of them will include 2 particular players?


Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is ______.


Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. The number of ways in which this can be done if at least 2 are red is ______.


There are 10 professors and 20 lecturers out of whom a committee of 2 professors and 3 lecturer is to be formed. Find:

C1 C2
(a) In how many ways committee: can be formed (i) 10C2 × 19C3 
(b) In how many ways a particular: professor is included (ii) 10C2 × 19C2
(c) In how many ways a particular: lecturer is included (iii) 9C1 × 20C3
(d) In how many ways a particular: lecturer is excluded (iv) 10C2 × 20C3

There are 12 balls numbered from 1 to 12. The number of ways in which they can be used to fill 8 places in a row so that the balls are with numbers in ascending or descending order is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×